120-cell

Initial vertex: ${{ V} _1} = {\left[\begin{matrix} \frac{1}{2} \\ 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}$

Transforms for vertex generation:

$ { \tilde{T}} _i\in \left\{ \left[\begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{matrix}\right], \left[\begin{matrix} -{\frac{1}{2}} & -{\frac{1}{2}} & -{\frac{1}{2}} & -{\frac{1}{2}} \\ \frac{1}{2} & \frac{1}{2} & -{\frac{1}{2}} & -{\frac{1}{2}} \\ \frac{1}{2} & -{\frac{1}{2}} & \frac{1}{2} & -{\frac{1}{2}} \\ \frac{1}{2} & -{\frac{1}{2}} & -{\frac{1}{2}} & \frac{1}{2}\end{matrix}\right], \left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} & -{\frac{1}{2}} & {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)} & 0 \\ \frac{1}{2} & {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} & 0 & {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)} & 0 & {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} & -{\frac{1}{2}} \\ 0 & {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)} & \frac{1}{2} & {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right], \left[\begin{matrix} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)} & -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} & -{\frac{1}{2}} & 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} & \frac{1}{2} & {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)} & 0 \\ \frac{1}{2} & {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)} & {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} & 0 \\ 0 & 0 & 0 & 1\end{matrix}\right] \right\}$

Vertexes:

${{{{{ T} _2}} {{{ V} _1}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{ V} _2}$
${{{{{ T} _2}} {{{ V} _2}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{ V} _3}$
${{{{{ T} _3}} {{{ V} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{ V} _4}$
${{{{{ T} _2}} {{{ V} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{ V} _5}$
${{{{{ T} _2}} {{{ V} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{ V} _6}$
${{{{{ T} _3}} {{{ V} _6}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{ V} _7}$
${{{{{ T} _2}} {{{ V} _7}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{ V} _8}$
${{{{{ T} _2}} {{{ V} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{ V} _9}$
${{{{{ T} _3}} {{{ V} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _1} _0}$
${{{{{ T} _2}} {{{{ V} _1} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _1} _1}$
${{{{{ T} _2}} {{{{ V} _1} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{ V} _1} _2}$
${{{{{ T} _3}} {{{{ V} _1} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _1} _3}$
${{{{{ T} _2}} {{{{ V} _1} _3}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _1} _4}$
${{{{{ T} _2}} {{{{ V} _1} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ \frac{1}{2}\end{matrix}\right]}} = {{{ V} _1} _5}$
${{{{{ T} _3}} {{{{ V} _1} _5}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _1} _6}$
${{{{{ T} _2}} {{{{ V} _1} _6}}} = {\left[\begin{matrix} \frac{1}{2} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _1} _7}$
${{{{{ T} _2}} {{{{ V} _1} _7}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _1} _8}$
${{{{{ T} _3}} {{{{ V} _1} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _1} _9}$
${{{{{ T} _2}} {{{{ V} _1} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _2} _0}$
${{{{{ T} _2}} {{{{ V} _2} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _2} _1}$
${{{{{ T} _3}} {{{{ V} _2} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _2} _2}$
${{{{{ T} _2}} {{{{ V} _2} _2}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _2} _3}$
${{{{{ T} _2}} {{{{ V} _2} _3}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _2} _4}$
${{{{{ T} _3}} {{{{ V} _2} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ \frac{1}{2} \\ 0\end{matrix}\right]}} = {{{ V} _2} _5}$
${{{{{ T} _2}} {{{{ V} _2} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _2} _6}$
${{{{{ T} _2}} {{{{ V} _2} _6}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _2} _7}$
${{{{{ T} _3}} {{{{ V} _2} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{ V} _2} _8}$
${{{{{ T} _2}} {{{{ V} _2} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _2} _9}$
${{{{{ T} _2}} {{{{ V} _2} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _3} _0}$
${{{{{ T} _3}} {{{{ V} _3} _0}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _3} _1}$
${{{{{ T} _2}} {{{{ V} _3} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _3} _2}$
${{{{{ T} _2}} {{{{ V} _3} _2}}} = {\left[\begin{matrix} \frac{1}{2} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0\end{matrix}\right]}} = {{{ V} _3} _3}$
${{{{{ T} _3}} {{{{ V} _3} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _3} _4}$
${{{{{ T} _2}} {{{{ V} _3} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _3} _5}$
${{{{{ T} _2}} {{{{ V} _3} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _3} _6}$
${{{{{ T} _3}} {{{{ V} _3} _6}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{ V} _3} _7}$
${{{{{ T} _2}} {{{{ V} _3} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{ V} _3} _8}$
${{{{{ T} _2}} {{{{ V} _3} _8}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{ V} _3} _9}$
${{{{{ T} _3}} {{{{ V} _3} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _4} _0}$
${{{{{ T} _2}} {{{{ V} _4} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ \frac{1}{2}\end{matrix}\right]}} = {{{ V} _4} _1}$
${{{{{ T} _2}} {{{{ V} _4} _1}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _4} _2}$
${{{{{ T} _3}} {{{{ V} _4} _2}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _4} _3}$
${{{{{ T} _2}} {{{{ V} _4} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ \frac{1}{2} \\ 0\end{matrix}\right]}} = {{{ V} _4} _4}$
${{{{{ T} _2}} {{{{ V} _4} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _4} _5}$
${{{{{ T} _4}} {{{{ V} _4} _5}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _4} _6}$
${{{{{ T} _2}} {{{{ V} _4} _6}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{ V} _4} _7}$
${{{{{ T} _2}} {{{{ V} _4} _7}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{ V} _4} _8}$
${{{{{ T} _3}} {{{{ V} _4} _8}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _4} _9}$
${{{{{ T} _2}} {{{{ V} _4} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _5} _0}$
${{{{{ T} _2}} {{{{ V} _5} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _5} _1}$
${{{{{ T} _3}} {{{{ V} _5} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{\frac{1}{2}} \\ 0\end{matrix}\right]}} = {{{ V} _5} _2}$
${{{{{ T} _2}} {{{{ V} _5} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _5} _3}$
${{{{{ T} _2}} {{{{ V} _5} _3}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _5} _4}$
${{{{{ T} _3}} {{{{ V} _5} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _5} _5}$
${{{{{ T} _2}} {{{{ V} _5} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _5} _6}$
${{{{{ T} _2}} {{{{ V} _5} _6}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{ V} _5} _7}$
${{{{{ T} _3}} {{{{ V} _5} _7}}} = {\left[\begin{matrix} \frac{1}{2} \\ 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{ V} _5} _8}$
${{{{{ T} _2}} {{{{ V} _5} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _5} _9}$
${{{{{ T} _2}} {{{{ V} _5} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _6} _0}$
${{{{{ T} _3}} {{{{ V} _6} _0}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _6} _1}$
${{{{{ T} _2}} {{{{ V} _6} _1}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{ V} _6} _2}$
${{{{{ T} _2}} {{{{ V} _6} _2}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _6} _3}$
${{{{{ T} _3}} {{{{ V} _6} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _6} _4}$
${{{{{ T} _2}} {{{{ V} _6} _4}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _6} _5}$
${{{{{ T} _2}} {{{{ V} _6} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _6} _6}$
${{{{{ T} _3}} {{{{ V} _6} _6}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _6} _7}$
${{{{{ T} _2}} {{{{ V} _6} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{ V} _6} _8}$
${{{{{ T} _2}} {{{{ V} _6} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _6} _9}$
${{{{{ T} _3}} {{{{ V} _6} _9}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ \frac{1}{2}\end{matrix}\right]}} = {{{ V} _7} _0}$
${{{{{ T} _2}} {{{{ V} _7} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _7} _1}$
${{{{{ T} _2}} {{{{ V} _7} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _7} _2}$
${{{{{ T} _3}} {{{{ V} _7} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _7} _3}$
${{{{{ T} _2}} {{{{ V} _7} _3}}} = {\left[\begin{matrix} \frac{1}{2} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _7} _4}$
${{{{{ T} _2}} {{{{ V} _7} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _7} _5}$
${{{{{ T} _3}} {{{{ V} _7} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{ V} _7} _6}$
${{{{{ T} _2}} {{{{ V} _7} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{ V} _7} _7}$
${{{{{ T} _2}} {{{{ V} _7} _7}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _7} _8}$
${{{{{ T} _3}} {{{{ V} _7} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{ V} _7} _9}$
${{{{{ T} _2}} {{{{ V} _7} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{ V} _8} _0}$
${{{{{ T} _2}} {{{{ V} _8} _0}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _8} _1}$
${{{{{ T} _3}} {{{{ V} _8} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _8} _2}$
${{{{{ T} _2}} {{{{ V} _8} _2}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _8} _3}$
${{{{{ T} _2}} {{{{ V} _8} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{ V} _8} _4}$
${{{{{ T} _3}} {{{{ V} _8} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _8} _5}$
${{{{{ T} _2}} {{{{ V} _8} _5}}} = {\left[\begin{matrix} 0 \\ \frac{1}{2} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _8} _6}$
${{{{{ T} _2}} {{{{ V} _8} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _8} _7}$
${{{{{ T} _3}} {{{{ V} _8} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _8} _8}$
${{{{{ T} _2}} {{{{ V} _8} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _8} _9}$
${{{{{ T} _2}} {{{{ V} _8} _9}}} = {\left[\begin{matrix} \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0\end{matrix}\right]}} = {{{ V} _9} _0}$
${{{{{ T} _4}} {{{{ V} _9} _0}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0\end{matrix}\right]}} = {{{ V} _9} _1}$
${{{{{ T} _2}} {{{{ V} _9} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _9} _2}$
${{{{{ T} _2}} {{{{ V} _9} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _9} _3}$
${{{{{ T} _3}} {{{{ V} _9} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _9} _4}$
${{{{{ T} _2}} {{{{ V} _9} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2}\end{matrix}\right]}} = {{{ V} _9} _5}$
${{{{{ T} _2}} {{{{ V} _9} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{ V} _9} _6}$
${{{{{ T} _3}} {{{{ V} _9} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _9} _7}$
${{{{{ T} _2}} {{{{ V} _9} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{ V} _9} _8}$
${{{{{ T} _2}} {{{{ V} _9} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ \frac{1}{2} \\ 0\end{matrix}\right]}} = {{{ V} _9} _9}$
${{{{{ T} _3}} {{{{ V} _9} _9}}} = {\left[\begin{matrix} \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _0} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _0} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _0} _2}$
${{{{{ T} _3}} {{{{{ V} _1} _0} _2}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _1} _0} _3}$
${{{{{ T} _3}} {{{{{ V} _1} _0} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _0} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _4}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _0} _5}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _0} _6}$
${{{{{ T} _3}} {{{{{ V} _1} _0} _6}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _0} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _1} _0} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _0} _9}$
${{{{{ T} _3}} {{{{{ V} _1} _0} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _1} _1} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _0}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _1} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _1} _2}$
${{{{{ T} _3}} {{{{{ V} _1} _1} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _1} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _3}}} = {\left[\begin{matrix} \frac{1}{2} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _1} _1} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _1} _5}$
${{{{{ T} _3}} {{{{{ V} _1} _1} _5}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _1} _6}$
${{{{{ T} _3}} {{{{{ V} _1} _1} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _1} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _1} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _8}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _1} _9}$
${{{{{ T} _3}} {{{{{ V} _1} _1} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _2} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _2} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _2} _2}$
${{{{{ T} _3}} {{{{{ V} _1} _2} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _2} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _2} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _4}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _2} _5}$
${{{{{ T} _3}} {{{{{ V} _1} _2} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _2} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _2} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _7}}} = {\left[\begin{matrix} \frac{1}{2} \\ 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _2} _8}$
${{{{{ T} _3}} {{{{{ V} _1} _2} _8}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _2} _9}$
${{{{{ T} _4}} {{{{{ V} _1} _2} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _3} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _3} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _1}}} = {\left[\begin{matrix} 0 \\ -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _3} _2}$
${{{{{ T} _3}} {{{{{ V} _1} _3} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _3} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _3} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _4}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _1} _3} _5}$
${{{{{ T} _3}} {{{{{ V} _1} _3} _5}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _3} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _6}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _3} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _7}}} = {\left[\begin{matrix} \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _3} _8}$
${{{{{ T} _4}} {{{{{ V} _1} _3} _8}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _3} _9}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _4} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _0}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _4} _1}$
${{{{{ T} _3}} {{{{{ V} _1} _4} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _4} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _2}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _1} _4} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _4} _4}$
${{{{{ T} _3}} {{{{{ V} _1} _4} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _1} _4} _5}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _4} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _4} _7}$
${{{{{ T} _3}} {{{{{ V} _1} _4} _7}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _4} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _4} _9}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _9}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _1} _5} _0}$
${{{{{ T} _3}} {{{{{ V} _1} _5} _0}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _1} _5} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _1} _5} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _5} _3}$
${{{{{ T} _3}} {{{{{ V} _1} _5} _3}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _1} _5} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _4}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _5} _5}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _5} _6}$
${{{{{ T} _3}} {{{{{ V} _1} _5} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _1} _5} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _5} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _5} _9}$
${{{{{ T} _3}} {{{{{ V} _1} _5} _9}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _1} _6} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _6} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _6} _2}$
${{{{{ T} _3}} {{{{{ V} _1} _6} _2}}} = {\left[\begin{matrix} 0 \\ 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _6} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _3}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ 0\end{matrix}\right]}} = {{{{ V} _1} _6} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ 0\end{matrix}\right]}} = {{{{ V} _1} _6} _5}$
${{{{{ T} _3}} {{{{{ V} _1} _6} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _6} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _6} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _6} _8}$
${{{{{ T} _3}} {{{{{ V} _1} _6} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _6} _9}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _7} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _0}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _7} _1}$
${{{{{ T} _3}} {{{{{ V} _1} _7} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _7} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _7} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _7} _4}$
${{{{{ T} _3}} {{{{{ V} _1} _7} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _7} _5}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _5}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _7} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _7} _7}$
${{{{{ T} _3}} {{{{{ V} _1} _7} _7}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _1} _7} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _8}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _7} _9}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _9}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _1} _8} _0}$
${{{{{ T} _3}} {{{{{ V} _1} _8} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _8} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _8} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _2}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _8} _3}$
${{{{{ T} _4}} {{{{{ V} _1} _8} _3}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _8} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _8} _5}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _8} _6}$
${{{{{ T} _3}} {{{{{ V} _1} _8} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _8} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _7}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _8} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _1} _8} _9}$
${{{{{ T} _3}} {{{{{ V} _1} _8} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _9} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _0}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _9} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _9} _2}$
${{{{{ T} _3}} {{{{{ V} _1} _9} _2}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _9} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _9} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _9} _5}$
${{{{{ T} _3}} {{{{{ V} _1} _9} _5}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _9} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _6}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _1} _9} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _1} _9} _8}$
${{{{{ T} _3}} {{{{{ V} _1} _9} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{\frac{1}{2}} \\ 0\end{matrix}\right]}} = {{{{ V} _1} _9} _9}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _9}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _0} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _0} _1}$
${{{{{ T} _3}} {{{{{ V} _2} _0} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _0} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _0} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _3}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _0} _4}$
${{{{{ T} _3}} {{{{{ V} _2} _0} _4}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _0} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _0} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _6}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _2} _0} _7}$
${{{{{ T} _3}} {{{{{ V} _2} _0} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _0} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _0} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _1} _0}$
${{{{{ T} _3}} {{{{{ V} _2} _1} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _2} _1} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _1}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _2} _1} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _2}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _2} _1} _3}$
${{{{{ T} _3}} {{{{{ V} _2} _1} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _1} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _2} _1} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _5}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _1} _6}$
${{{{{ T} _3}} {{{{{ V} _2} _1} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _1} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{\frac{1}{2}} \\ 0\end{matrix}\right]}} = {{{{ V} _2} _1} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _1} _9}$
${{{{{ T} _3}} {{{{{ V} _2} _1} _9}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _2} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _0}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _2} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _1}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _2} _2}$
${{{{{ T} _3}} {{{{{ V} _2} _2} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _2} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _2} _2} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _4}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _2} _2} _5}$
${{{{{ T} _3}} {{{{{ V} _2} _2} _5}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _2} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _2} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _7}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _2} _8}$
${{{{{ T} _4}} {{{{{ V} _2} _2} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _2} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _3} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _0}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _3} _1}$
${{{{{ T} _3}} {{{{{ V} _2} _3} _1}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _3} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _3} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _3} _4}$
${{{{{ T} _3}} {{{{{ V} _2} _3} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _3} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _5}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _2} _3} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _3} _7}$
${{{{{ T} _3}} {{{{{ V} _2} _3} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _3} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _3} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _9}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _4} _0}$
${{{{{ T} _3}} {{{{{ V} _2} _4} _0}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _4} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _2} _4} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _4} _3}$
${{{{{ T} _3}} {{{{{ V} _2} _4} _3}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _2} _4} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _4} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _4} _6}$
${{{{{ T} _3}} {{{{{ V} _2} _4} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _4} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _7}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _4} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _4} _9}$
${{{{{ T} _3}} {{{{{ V} _2} _4} _9}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _2} _5} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _0}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _2} _5} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _1}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _5} _2}$
${{{{{ T} _3}} {{{{{ V} _2} _5} _2}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _2} _5} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _5} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _5} _5}$
${{{{{ T} _3}} {{{{{ V} _2} _5} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _5} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _5} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _5} _8}$
${{{{{ T} _3}} {{{{{ V} _2} _5} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _5} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _9}}} = {\left[\begin{matrix} 0 \\ -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _6} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _6} _1}$
${{{{{ T} _3}} {{{{{ V} _2} _6} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _6} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _6} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _3}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _2} _6} _4}$
${{{{{ T} _3}} {{{{{ V} _2} _6} _4}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _6} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _5}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _2} _6} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _6}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _2} _6} _7}$
${{{{{ T} _3}} {{{{{ V} _2} _6} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _6} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _6} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _7} _0}$
${{{{{ T} _3}} {{{{{ V} _2} _7} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ \frac{1}{2} \\ 0\end{matrix}\right]}} = {{{{ V} _2} _7} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _7} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _2}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _7} _3}$
${{{{{ T} _3}} {{{{{ V} _2} _7} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _7} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _2} _7} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _5}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _2} _7} _6}$
${{{{{ T} _3}} {{{{{ V} _2} _7} _6}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _2} _7} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _7}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _7} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _7} _9}$
${{{{{ T} _3}} {{{{{ V} _2} _7} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _2} _8} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _0}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _8} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _8} _2}$
${{{{{ T} _3}} {{{{{ V} _2} _8} _1}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _8} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _3}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _8} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _4}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _8} _5}$
${{{{{ T} _3}} {{{{{ V} _2} _8} _4}}} = {\left[\begin{matrix} \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _8} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _6}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _8} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _8} _8}$
${{{{{ T} _3}} {{{{{ V} _2} _8} _7}}} = {\left[\begin{matrix} 0 \\ -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _8} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _9} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _0}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _2} _9} _1}$
${{{{{ T} _3}} {{{{{ V} _2} _9} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _9} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _9} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _3}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _9} _4}$
${{{{{ T} _4}} {{{{{ V} _2} _9} _4}}} = {\left[\begin{matrix} \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _9} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _9} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _6}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _9} _7}$
${{{{{ T} _3}} {{{{{ V} _2} _9} _6}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _2} _9} _8}$
${{{{{ T} _3}} {{{{{ V} _2} _9} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _2} _9} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _0} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _0}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _0} _1}$
${{{{{ T} _3}} {{{{{ V} _3} _0} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _0} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _0} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _3}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _0} _4}$
${{{{{ T} _3}} {{{{{ V} _3} _0} _3}}} = {\left[\begin{matrix} \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _0} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _0} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _6}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _0} _7}$
${{{{{ T} _3}} {{{{{ V} _3} _0} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _0} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _0} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _3} _1} _0}$
${{{{{ T} _3}} {{{{{ V} _3} _0} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _1} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _1}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _1} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _1} _3}$
${{{{{ T} _3}} {{{{{ V} _3} _1} _3}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _1} _4}$
${{{{{ T} _3}} {{{{{ V} _3} _1} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _3} _1} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _1} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _6}}} = {\left[\begin{matrix} \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _1} _7}$
${{{{{ T} _3}} {{{{{ V} _3} _1} _6}}} = {\left[\begin{matrix} 0 \\ 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _1} _8}$
${{{{{ T} _3}} {{{{{ V} _3} _1} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _1} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _9}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _2} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _2} _1}$
${{{{{ T} _3}} {{{{{ V} _3} _2} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _2} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _2}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _3} _2} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _2} _4}$
${{{{{ T} _3}} {{{{{ V} _3} _2} _2}}} = {\left[\begin{matrix} 0 \\ 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _2} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ 0\end{matrix}\right]}} = {{{{ V} _3} _2} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ 0\end{matrix}\right]}} = {{{{ V} _3} _2} _7}$
${{{{{ T} _3}} {{{{{ V} _3} _2} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _2} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _2} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _3} _0}$
${{{{{ T} _3}} {{{{{ V} _3} _3} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _3} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _3} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _3} _3}$
${{{{{ T} _3}} {{{{{ V} _3} _3} _3}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _3} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _3} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _3} _6}$
${{{{{ T} _4}} {{{{{ V} _3} _3} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0 \\ \frac{1}{2} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _3} _7}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _7}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _3} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _3} _9}$
${{{{{ T} _4}} {{{{{ V} _3} _3} _9}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _4} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _0}}} = {\left[\begin{matrix} \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _4} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _4} _2}$
${{{{{ T} _3}} {{{{{ V} _3} _4} _2}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _4} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _3} _4} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _4} _5}$
${{{{{ T} _3}} {{{{{ V} _3} _4} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _3} _4} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0\end{matrix}\right]}} = {{{{ V} _3} _4} _7}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _7}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _4} _8}$
${{{{{ T} _3}} {{{{{ V} _3} _4} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _4} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _5} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _0}}} = {\left[\begin{matrix} 0 \\ -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _5} _1}$
${{{{{ T} _3}} {{{{{ V} _3} _5} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _5} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _2}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _5} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _3} _5} _4}$
${{{{{ T} _3}} {{{{{ V} _3} _5} _3}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _3} _5} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _5} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _5} _7}$
${{{{{ T} _4}} {{{{{ V} _3} _5} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _5} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _5} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _9}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _3} _6} _0}$
${{{{{ T} _4}} {{{{{ V} _3} _6} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _3} _6} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _6} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _6} _3}$
${{{{{ T} _3}} {{{{{ V} _3} _6} _3}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _6} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _4}}} = {\left[\begin{matrix} \frac{1}{2} \\ 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _6} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _5}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _6} _6}$
${{{{{ T} _3}} {{{{{ V} _3} _6} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _6} _7}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _6} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _6} _9}$
${{{{{ T} _3}} {{{{{ V} _3} _6} _8}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _3} _7} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _0}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _7} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _7} _2}$
${{{{{ T} _3}} {{{{{ V} _3} _7} _0}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _7} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _7} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _3} _7} _5}$
${{{{{ T} _3}} {{{{{ V} _3} _7} _5}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _7} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ \frac{1}{2} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _3} _7} _7}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _7} _8}$
${{{{{ T} _4}} {{{{{ V} _3} _7} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _7} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _9}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _3} _8} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _0}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _8} _1}$
${{{{{ T} _4}} {{{{{ V} _3} _8} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _8} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ \frac{1}{2} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _3} _8} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _3}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _8} _4}$
${{{{{ T} _3}} {{{{{ V} _3} _8} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0 \\ \frac{1}{2} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _8} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _8} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _8} _7}$
${{{{{ T} _3}} {{{{{ V} _3} _8} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _8} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _3} _8} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _9}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _9} _0}$
${{{{{ T} _3}} {{{{{ V} _3} _8} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _9} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _3} _9} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _9} _3}$
${{{{{ T} _3}} {{{{{ V} _3} _9} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _3} _9} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _9} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _9} _6}$
${{{{{ T} _3}} {{{{{ V} _3} _9} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _3} _9} _7}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _3} _9} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _3} _9} _9}$
${{{{{ T} _3}} {{{{{ V} _3} _9} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _0} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _0} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0 \\ \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _0} _2}$
${{{{{ T} _3}} {{{{{ V} _4} _0} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _0} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _3}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _0} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0 \\ -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _0} _5}$
${{{{{ T} _4}} {{{{{ V} _4} _0} _4}}} = {\left[\begin{matrix} \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _0} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _6}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _0} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _0} _8}$
${{{{{ T} _4}} {{{{{ V} _4} _0} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _0} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _9}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _1} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _0}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _1} _1}$
${{{{{ T} _3}} {{{{{ V} _4} _1} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _1} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _1} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _3}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _1} _4}$
${{{{{ T} _4}} {{{{{ V} _4} _1} _4}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _1} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _1} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _6}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _1} _7}$
${{{{{ T} _4}} {{{{{ V} _4} _1} _7}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _1} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _8}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _1} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _2} _0}$
${{{{{ T} _4}} {{{{{ V} _4} _1} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _2} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _2} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _2}}} = {\left[\begin{matrix} \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _2} _3}$
${{{{{ T} _4}} {{{{{ V} _4} _2} _1}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _2} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _2} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{\frac{1}{2}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _2} _6}$
${{{{{ T} _4}} {{{{{ V} _4} _2} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _2} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _7}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _2} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _2} _9}$
${{{{{ T} _3}} {{{{{ V} _4} _2} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _3} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _0}}} = {\left[\begin{matrix} 0 \\ \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _3} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _3} _2}$
${{{{{ T} _4}} {{{{{ V} _4} _3} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _3} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _3} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _4}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _4} _3} _5}$
${{{{{ T} _4}} {{{{{ V} _4} _3} _5}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _4} _3} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _3} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _3} _8}$
${{{{{ T} _3}} {{{{{ V} _4} _3} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _4} _3} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _9}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _4} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _0}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _4} _1}$
${{{{{ T} _4}} {{{{{ V} _4} _4} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _4} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _2}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _4} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _4} _4}$
${{{{{ T} _4}} {{{{{ V} _4} _4} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _4} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _4} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _6}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0 \\ -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _4} _7}$
${{{{{ T} _3}} {{{{{ V} _4} _4} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _4} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _8}}} = {\left[\begin{matrix} \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _4} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _9}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _5} _0}$
${{{{{ T} _3}} {{{{{ V} _4} _5} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _5} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _1}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _4} _5} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _5} _3}$
${{{{{ T} _4}} {{{{{ V} _4} _5} _0}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _5} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _5} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _5}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _5} _6}$
${{{{{ T} _3}} {{{{{ V} _4} _5} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _5} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _5} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _5} _9}$
${{{{{ T} _4}} {{{{{ V} _4} _4} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _6} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _6} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _6} _2}$
${{{{{ T} _3}} {{{{{ V} _4} _6} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _6} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _3}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _6} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _6} _5}$
${{{{{ T} _3}} {{{{{ V} _4} _6} _3}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _6} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _6} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _7}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _6} _8}$
${{{{{ T} _3}} {{{{{ V} _4} _6} _8}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _6} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _7} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _7} _1}$
${{{{{ T} _3}} {{{{{ V} _4} _7} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0 \\ -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _7} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _7} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _3}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _7} _4}$
${{{{{ T} _3}} {{{{{ V} _4} _7} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _7} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _7} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _7} _7}$
${{{{{ T} _3}} {{{{{ V} _4} _6} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _4} _7} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _7} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _8} _0}$
${{{{{ T} _3}} {{{{{ V} _4} _8} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _8} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _8} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _4} _8} _3}$
${{{{{ T} _4}} {{{{{ V} _4} _8} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _4} _8} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _8} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _5}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _8} _6}$
${{{{{ T} _3}} {{{{{ V} _4} _8} _5}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _4} _8} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _7}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _8} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _8} _9}$
${{{{{ T} _3}} {{{{{ V} _4} _8} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _4} _9} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _0}}} = {\left[\begin{matrix} \frac{1}{2} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _9} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _9} _2}$
${{{{{ T} _3}} {{{{{ V} _4} _9} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _9} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _3}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _9} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _4}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _9} _5}$
${{{{{ T} _3}} {{{{{ V} _4} _9} _4}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _9} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _9} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _4} _9} _8}$
${{{{{ T} _3}} {{{{{ V} _4} _9} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0\end{matrix}\right]}} = {{{{ V} _4} _9} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0\end{matrix}\right]}} = {{{{ V} _5} _0} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _0}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _0} _1}$
${{{{{ T} _4}} {{{{{ V} _5} _0} _0}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0\end{matrix}\right]}} = {{{{ V} _5} _0} _2}$
${{{{{ T} _4}} {{{{{ V} _4} _9} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _0} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _3}}} = {\left[\begin{matrix} 0 \\ \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _0} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _0} _5}$
${{{{{ T} _4}} {{{{{ V} _5} _0} _3}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _0} _6}$
${{{{{ T} _3}} {{{{{ V} _4} _9} _0}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _0} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _5} _0} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _8}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _5} _0} _9}$
${{{{{ T} _3}} {{{{{ V} _4} _8} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _5} _1} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0 \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _1} _1}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0\end{matrix}\right]}} = {{{{ V} _5} _1} _2}$
${{{{{ T} _4}} {{{{{ V} _4} _8} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _1} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _5} _1} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _4}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _1} _5}$
${{{{{ T} _3}} {{{{{ V} _5} _1} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _5} _1} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _1} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _7}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _1} _8}$
${{{{{ T} _4}} {{{{{ V} _5} _1} _7}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _1} _9}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _9}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _5} _2} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _0}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _2} _1}$
${{{{{ T} _4}} {{{{{ V} _5} _2} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _2} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ 0 \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _5} _2} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _3}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _2} _4}$
${{{{{ T} _4}} {{{{{ V} _5} _1} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _2} _5}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _2} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _6}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _5} _2} _7}$
${{{{{ T} _4}} {{{{{ V} _5} _2} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}\end{matrix}\right]}} = {{{{ V} _5} _2} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ \frac{1}{2} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _2} _9}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _3} _0}$
${{{{{ T} _3}} {{{{{ V} _5} _2} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _3} _1}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _3} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _2}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _3} _3}$
${{{{{ T} _4}} {{{{{ V} _5} _1} _6}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _5} _3} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _3} _5}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _3} _6}$
${{{{{ T} _3}} {{{{{ V} _5} _3} _6}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _5} _3} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _3} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _3} _9}$
${{{{{ T} _4}} {{{{{ V} _5} _3} _7}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _5} _4} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _0}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _4} _1}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _5} _4} _2}$
${{{{{ T} _4}} {{{{{ V} _5} _4} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _5} _4} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _3}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _4} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _4}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _4} _5}$
${{{{{ T} _3}} {{{{{ V} _5} _4} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _4} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _4} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _7}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _5} _4} _8}$
${{{{{ T} _3}} {{{{{ V} _5} _4} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{\frac{1}{2}}\end{matrix}\right]}} = {{{{ V} _5} _4} _9}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _9}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _5} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _5} _1}$
${{{{{ T} _3}} {{{{{ V} _5} _4} _9}}} = {\left[\begin{matrix} 0 \\ \frac{1}{2} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _5} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _2}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _5} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _3}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _5} _4}$
${{{{{ T} _4}} {{{{{ V} _5} _1} _5}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _5} _5}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _5}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _5} _5} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _6}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _5} _5} _7}$
${{{{{ T} _3}} {{{{{ V} _4} _8} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _5} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _8}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _5} _9}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _6} _0}$
${{{{{ T} _4}} {{{{{ V} _4} _7} _8}}} = {\left[\begin{matrix} {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _6} _1}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _1}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0\end{matrix}\right]}} = {{{{ V} _5} _6} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _2}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _5} _6} _3}$
${{{{{ T} _4}} {{{{{ V} _4} _6} _9}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _6} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _6} _5}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ 0 \\ -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _6} _6}$
${{{{{ T} _3}} {{{{{ V} _4} _3} _9}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{\frac{1}{2}} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _6} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _7}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _6} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _6} _9}$
${{{{{ T} _3}} {{{{{ V} _5} _6} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0\end{matrix}\right]}} = {{{{ V} _5} _7} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0 \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _7} _1}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _1}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _5} _7} _2}$
${{{{{ T} _3}} {{{{{ V} _5} _7} _0}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _7} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _3}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _7} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ 0 \\ \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _7} _5}$
${{{{{ T} _3}} {{{{{ V} _4} _2} _7}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _7} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _6}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0 \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _5} _7} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _7}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _7} _8}$
${{{{{ T} _4}} {{{{{ V} _3} _8} _7}}} = {\left[\begin{matrix} -{\frac{1}{2}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _7} _9}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _9}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _8} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _0}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _8} _1}$
${{{{{ T} _3}} {{{{{ V} _3} _8} _2}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ 0 \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _8} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _2}}} = {\left[\begin{matrix} {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0 \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _8} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _3}}} = {\left[\begin{matrix} -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _5} _8} _4}$
${{{{{ T} _4}} {{{{{ V} _3} _7} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _8} _5}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _8} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _6}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ \frac{1}{2} \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _8} _7}$
${{{{{ T} _4}} {{{{{ V} _3} _5} _8}}} = {\left[\begin{matrix} -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{\frac{1}{2}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _8} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _8}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _5} _8} _9}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _9}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _9} _0}$
${{{{{ T} _3}} {{{{{ V} _3} _2} _0}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)} \\ 0\end{matrix}\right]}} = {{{{ V} _5} _9} _1}$
${{{{{ T} _4}} {{{{{ V} _5} _9} _1}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0\end{matrix}\right]}} = {{{{ V} _5} _9} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _9} _2}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)}} \\ {\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}} \\ 0\end{matrix}\right]}} = {{{{ V} _5} _9} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _9} _3}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{matrix}\right]}} = {{{{ V} _5} _9} _4}$
${{{{{ T} _3}} {{{{{ V} _5} _9} _4}}} = {\left[\begin{matrix} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _9} _5}$
${{{{{ T} _2}} {{{{{ V} _5} _9} _5}}} = {\left[\begin{matrix} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}} \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _9} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _9} _6}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}}{\left({{7} + {{{3}} {{\sqrt{5}}}}}\right)}} \\ {\frac{1}{4}}{\left({{3} + {\sqrt{5}}}\right)} \\ \frac{1}{2}\end{matrix}\right]}} = {{{{ V} _5} _9} _7}$
${{{{{ T} _3}} {{{{{ V} _3} _0} _0}}} = {\left[\begin{matrix} 0 \\ 0 \\ -{{\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}} \\ {\frac{1}{2}}{\left({{3} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _9} _8}$
${{{{{ T} _4}} {{{{{ V} _2} _4} _6}}} = {\left[\begin{matrix} 0 \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}} \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{matrix}\right]}} = {{{{ V} _5} _9} _9}$
${{{{{ T} _3}} {{{{{ V} _1} _1} _8}}} = {\left[\begin{matrix} 0 \\ {\frac{1}{2}}{\left({{2} + {\sqrt{5}}}\right)} \\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)} \\ -{{\frac{1}{4}} {{{\sqrt{5}}} {{\left({{3} + {\sqrt{5}}}\right)}}}}\end{matrix}\right]}} = {{{{ V} _6} _0} _0}$